Dashboard / My courses / INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta / General / Second Exam

Started on Sunday, 10 January 2021, 9:45 AM
State Finished
Completed on Sunday, 10 January 2021, 10:59 AM
Time taken 1 hour 14 mins
Grade 22.00 out of 32.00 (69%)

Question 1
Correct
Mark 1.00 out of 1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}0 & 2 \\ 1 & 1\end{array}\right), A_{2}\left(\begin{array}{cc}3 & -1 \\ 1 & 0\end{array}\right), A_{3}=\left(\begin{array}{cc}6 & -8 \\ -1 & -3\end{array}\right)\right\}$ is
Select one:
a. 3
() b. 2
\checkmark
c. 0

○. d. 1

The correct answer is: 2

Question 2

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{nullity}(A)=$
Correct
Mark 1.00 out of 1.00

Select one:
(a. 0
b. 2
c. 3

○d. 1

The correct answer is: 0

Question 3

Correct
Mark 1.00 out
of 1.00

$$
\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right) \text { is }
$$

Select one:
(a. 2
b. 3
C. 0

○d. 1

The correct answer is: 2

Question 4
Incorrect
Mark 0.00 out
of 1.00
if $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is a spanning set for $\mathbb{R}^{3 \times 2}$, then
Select one:
() a. $k \leq 6$
\times
b. $k=6$
c. $k \geq 6$
d. $k>6$

The correct answer is: $k \geq 6$

Question 5
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=-y\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:
a. False
(b. True

The correct answer is: True

Question 6
Correct
Mark 1.00 out of 1.00

If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right)=0$ for some $x_{0} \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are linearly dependent.

Select one:
-
a. Falseb. True

The correct answer is: False

Question 7
Incorrect
Mark 0.00 out of 1.00

If A is a nonzero 4×2-matrix and $A x=0$ has infinitely many solutions, then $\operatorname{rank}(A)=$
Select one:
a. 3
(o) b. 2
\times
C. 1
d. 4

The correct answer is: 1

Question 8

Correct
Mark 1.00 out
of 1.00

The coordinate vector of $8+6 x$ with respect to the basis $[2 x, 2]$ is $(4,3)^{T}$

Select one:

- a. True
(b. False V

Question 9
Incorrect
Mark 0.00 out of 1.00

If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ forms a spanning set for a vector space $V, \operatorname{dim}(V)=3, v_{4}$ can be written as a linear combination of v_{1}, v_{2}, v_{3}, then

Select one:
(a. a. $\left\{v_{1}, v_{2}, v_{3}\right\}$ are linearly dependent \timesb. $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for Vc. v_{1} can be written as a linear combination of v_{2}, v_{3}, v_{4}d. $\left\{v_{1}, v_{2}, v_{3}\right\}$ do not form a spanning set for V

The correct answer is: $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V

Question 10
Correct
Mark 1.00 out of 1.00

Let V be a vector space, $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ a spanning set for V, and $v \in V$, then the vectors $\left\{v_{1}, v_{2}, \ldots v_{n}, v\right\}$ form a spanning set for V.

Select one:
a. False
© b. True \downarrow

The correct answer is: True

Question 11
Incorrect
Mark 0.00 out of 1.00

Let A be a 4×5-matrix, with $\operatorname{rank}(A)=3$. Then The rows of A are linearly dependent.
Select one:
a. True
() b. False \boldsymbol{x}

The correct answer is: True

Question 12
Incorrect Mark 0.00 out of 1.00

Let A be a 2×4 matrix, and $\operatorname{rank}(A)=2$, then, the columns of A form a spanning set for \mathbb{R}^{2}.

Select one:
© a. False \boldsymbol{x}
b. True

The correct answer is: True

Question 13
Incorrect
Mark 0.00 out of 1.00

The coordinate vector of $\left(\begin{array}{l}-3 \\ -2 \\ -5\end{array}\right)$ with respect to the ordered basis $\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)\right]$ is
Select one:
a. $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$
b. $\left(\begin{array}{c}1 \\ -4 \\ 3\end{array}\right)$
c. $\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$

- d. $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$
\times

The correct answer is: $\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)$

Question 14
Correct
Mark 1.00 out of 1.00

Let A be a 4×3-matrix with nullity $(A)=0$. Then $\operatorname{rank}(A)=1$
Select one:

- a. False
- b. True

The correct answer is: False

Question 15
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals
Select one:
© a. 2
b. 3

- c. 0
od. 1

The correct answer is: 2

Question 16
Correct
Mark 1.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis $U=\left[u_{1}=\binom{7}{2}, u_{2}=\binom{3}{1}\right]$ is

Select one:
a. $T=\left(\begin{array}{cc}-7 & 3 \\ 2 & -1\end{array}\right)$
b. $T=\left(\begin{array}{ll}7 & 3 \\ 2 & 1\end{array}\right)$
© c. $T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)$
d. $T=\left(\begin{array}{cc}7 & -3 \\ -2 & 1\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}1 & -3 \\ -2 & 7\end{array}\right)$

Question 17
Correct
Mark 1.00 out of 1.00

If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{rank}(A)=$
Select one:
a. 0
-b. 2
c. 1
© d. 3
\checkmark

The correct answer is: 3

Question 18
The vectors $\left\{(1,-1,-4)^{T},(1,-1,1)^{T},(1,-1,2)^{T}\right\}$ form a basis for \mathbb{R}^{3}.
Select one:
a. True
(o) b. False

The correct answer is: False

Question 19
Correct
Mark 1.00 out of 1.00

The functions $\sin x, \cos x, \sin (2 x)$ in $C^{2}[0,2 \pi]$ are
Select one:

- a. linearly independent
- b. linearly dependent

The correct answer is: linearly independent

Question 20
Correct
Mark 1.00 out of 1.00

If $A=\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ -1 & 2 & 2 & 0 \\ 2 & -4 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.
Select one:

- a. False
b. True

The correct answer is: False

Question 21
Correct
Mark 1.00 out
of 1.00

The vectors $\left\{x+1, x^{2}+2 x+1, x^{2}+x+1\right\}$ form a basis for P_{3}.
Select one:
a. False

Ob. True

The correct answer is: True

Question 22
If A is a 3×5 matrix, then
Correct
Mark 1.00 out of 1.00

Select one:
a. The columns of A are linearly independent
b. The rows of A are linearly dependent
(c) c. $\operatorname{nullity}(A) \geq 2$
d. $\operatorname{Rank}(A)=2$

The correct answer is: $\operatorname{nullity}(A) \geq 2$

Question 23
Correct
Mark 1.00 out of 1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 1 & 1 \\ 2 & 6 & -1 & 0 & -1 \\ 3 & 10 & 0 & 4 & 0\end{array}\right)$ is
Select one:
(a) 2
b. 4
c. 1
-d. 3

The correct answer is: 2

Question 24
Correct
Mark 1.00 out of 1.00

If $f_{1}, f_{2}, \cdots, f_{n} \in C^{n-1}[a, b]$ and $W\left[f_{1}, f_{2}, \cdots, f_{n}\right]\left(x_{0}\right) \neq 0$ for some $x_{0} \in[a, b]$, then $f_{1}, f_{2}, \cdots, f_{n}$ are Select one:

- a. linearly dependentb. form a spanning set for $C^{n-1}[a, b]$
o c. linearly independent.

The correct answer is: linearly independent.

Question 25
Incorrect
Mark 0.00 out of 1.00
let A be a 3×5-matrix, if the row echelon form of A has 1 nonzero row, then $\operatorname{dim}(c o l u m n$ space of A) is Select one:
a. 0
-b. 2
(-) c. 3
x
d. 1

The correct answer is: 1

Question 26
Correct
Mark 1.00 out of 1.00

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=-3 x^{2}+x+5$, then the coordinate vector of $p(x)$ with respect to E is

Select one:

- a. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
b. $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$
c. $\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)$
d. $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$

Question 27
Correct
Mark 1.00 out of 1.00

Let $E=[3-x, 2+x], F=[x, 1]$ be ordered bases for P_{2}. The transition matrix from E to F is Select one:
a. $\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$
b. $\left(\begin{array}{cc}3 & -1 \\ 2 & 1\end{array}\right)$
c. $\left(\begin{array}{cc}-1 & 3 \\ 1 & 2\end{array}\right)$
od. $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}-1 & 1 \\ 3 & 2\end{array}\right)$

Question 28
Correct
Mark 1.00 out of 1.00

Let A be a 4×3 matrix, and nullity $(A)=0$, then
Select one:
© a. The columns of A are linearly independent
b. The rows of A are linearly independentc. $\operatorname{rank}(A)=1$d. the columns of A form a basis for \mathbb{R}^{4}

The correct answer is: The columns of A are linearly independent

Question 29
Incorrect
Mark 0.00 out of 1.00

Let A be a 3×5 matrix, and nullity $(A)=2$, then the columns of A form a aspanning set for \mathbb{R}^{3} Select one:

- a. True
© b. False \boldsymbol{x}

The correct answer is: True

If A is a 3×5-matrix, rows of A are linearly independent, then
Correct
Mark 1.00 out of 1.00

Question 31
Incorrect
Mark 0.00 out
of 1.00
ut

If V is a vector space of dimension n, then any subset of V which has more than n vectors is a spanning set for V.

Select one:
a. False
(b. True \boldsymbol{x}

The correct answer is: False

Question 32
Incorrect
Mark 0.00 out of 1.00

Let $S=\{f \in C[-1,1]: f$ is an odd function $\}$, then S is a subspace of $C[-1,1]$.
Select one:
(a. False \boldsymbol{x}
○b. True

The correct answer is: True

